Answer on Question \#55902, Physics / Electromagnetism

Points A and B each have an electric potential of +12 V . How much work would be required to take $3 C$ of positive charge from A to B ?

0 J
3 J
9 J
36 J
Solution:
Work W to the electric potential difference ΔV between the initial and final locations of the particle is

$$
W=q \Delta \mathrm{~V}
$$

Thus,

$$
W=(3 \mathrm{C}) \cdot(12 \mathrm{~V}-12 \mathrm{~V})=0
$$

Answer: 0 J
2. The electric potential difference between two points A and B is 42 V . What is the work done by an external agent in carrying of $5.0 \times 10^{-5} \mathrm{C}$ from A to B at constant speed?
$2.1 \times 10^{-3} \mathrm{~J}$
$8.4 \times 10^{-4} \mathrm{~J}$
21×10^{-4} J
$8.4 \times 10^{-3} \mathrm{~J}$

Solution:

Work W to the electric potential difference ΔV between the initial and final locations of the particle is

$$
W=q \Delta \mathrm{~V}
$$

Thus,

$$
W=\left(5.0 \cdot 10^{-5} \mathrm{C}\right) \cdot(42 \mathrm{~V})=210 \cdot 10^{-5}=21 \cdot 10^{-4} \mathrm{~J}=2.1 \cdot 10^{-3} \mathrm{~J}
$$

Answer: $2.1 \times 10^{-3} \mathrm{~J} ; 21 \times 10^{-4} \mathrm{~J}$

