Answer on Question #55896, Physics / Electromagnetism

Task: A uniform electric field of 200 N/C is in the x-direction. A point charge of 3μ C is released from rest at the origin. What is the kinetic energy of the charge when it is at x = 4 m?

- 2.4×10-2J
- 1.6×10-2J
- 3.6×10-2J
- 4.8×10-2J

Solution:

Force on charge: F = Eq

This force is constant and will increase charge's velocity with constant acceleration.

By the Second Newton's law: $F = ma \rightarrow a = F/m = Eq/m$

Thus, time needed to reach x: $x = \frac{at^2}{2} \Rightarrow t = \sqrt{\frac{2x}{a}} = \sqrt{\frac{2xm}{Eq}}$

Charge velocity at x: $v = at = \frac{Eq}{m} \sqrt{\frac{2mx}{Eq}} = \sqrt{\frac{2xEq}{m}}$

And kinetic energy: $K = \frac{mv^2}{2} = \frac{m}{2} \frac{2xEq}{m} = Exq = 200N/C \cdot 3 \cdot 10^{-6} C \cdot 4m = 2.4 \cdot 10^{-3} J$

Answer: kinetic energy of the charge $K = 2.4 \cdot 10^{-3} J$

https://www.AssignmentExpert.com