Answer on Question #55894, Physics / Electromagnetism

Task: The electron beam in a television tube consists of electrons accelerated from rest through a potential difference of about 20 000V. What is the speed of the electrons? (Ignore relativistic effects). Electron rest mass is 9.11×10^{-31} kg and electronic charge is 1.6×10^{-19} C.

8.4×10⁷ m/s

3.8×10⁶ m/s 6×10⁶ m/s 4.7×10⁷ m/s

Solution:

Kinetic energy of electron accelerated from rest is equal to its potential energy change:

 $m_e \cdot v_e^2/2 = q_e \cdot V$,

where $m_e = 9.11 \cdot 10^{-31}$ kg – is electron rest mass;

 $q_e = 1.6 \cdot 10^{-19}$ C – is electron electronic charge;

V = 20 000 V - potential difference;

 v_{e-} is the speed of the electrons.

Find the electron speed:

$$v_e = \sqrt{\frac{2q_eV}{m_e}} = \sqrt{\frac{2 \cdot 1.6 \cdot 10^{-19} \cdot 20000}{9.11 \cdot 10^{-31}}} = 8.4 \cdot 10^7 \, m/s$$

Answer: the electron speed is $8.4 \cdot 10^7$ m/s.

https://www.AssignmentExpert.com