

Answer on Question #55881-Physics-Electromagnetism

1 The electron beam in a television tube consists of electrons accelerated from rest through a potential difference of about $U = 20\,000\text{V}$. What is the speed of the electrons? (Ignore relativistic effects). Electron rest mass is $m_e = 9.11 \cdot 10^{-31}\text{ kg}$ and electronic charge is $e = 1.6 \cdot 10^{-19}\text{ C}$.

8.4×10⁷ m/s

3.8×10⁶ m/s

6×10⁶ m/s

4.7×10⁷ m/s

Solution

Kinetic energy of electron accelerated from rest is equal to its potential energy change.

$$\frac{m_e v^2}{2} = eU.$$

The speed of the electron is

$$v = \sqrt{\frac{2eU}{m}} = \sqrt{\frac{2 \cdot 1.6 \cdot 10^{-19} \cdot 20\,000}{9.11 \cdot 10^{-31}}} = 8.4 \cdot 10^7 \frac{\text{m}}{\text{s}}.$$

Answer: $8.4 \cdot 10^7 \frac{\text{m}}{\text{s}}$.