Answer on Question \#55881-Physics-Electromagnetism

1 The electron beam in a television tube consists of electrons accelerated from rest through a potential difference of about $U=20000 \mathrm{~V}$. What is the speed of the electrons? (Ignore relativistic effects). Electron rest mass is $m_{e}=9.11 \cdot 10^{-31} \mathrm{~kg}$ and electronic charge is $e=1.6 \cdot 10^{-19} \mathrm{C}$.

$8.4 \times 107 \mathrm{~m} / \mathrm{s}$

$3.8 \times 106 \mathrm{~m} / \mathrm{s}$
$6 \times 106 \mathrm{~m} / \mathrm{s}$
$4.7 \times 107 \mathrm{~m} / \mathrm{s}$

Solution

Kinetic energy of electron accelerated from rest is equal to its potential energy change.

$$
\frac{m_{e} v^{2}}{2}=e U
$$

The speed of the electron is

$$
v=\sqrt{\frac{2 e U}{m}}=\sqrt{\frac{2 \cdot 1.6 \cdot 10^{-19} \cdot 20000}{9.11 \cdot 10^{-31}}}=8.4 \cdot 10^{7} \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer: 8.4 $\cdot \mathbf{1 0}^{7} \frac{\mathrm{~m}}{\mathrm{~s}}$.

