Answer on Question \#55879-Physics-Mechanics-Relativity

particle 1 of mass 3 m initially moving with a speed v_{o} in the positive x direction collides with particle 2 of mass m moving in opposite x direction with unknown speed v. After collision particle 1 moves along the negative y direction with speed $\frac{v_{o}}{2}$ and particle 2 moves with v ' in a direction making angle of 45 deg with positive x direction. Determine v and v '.

Solution

From the conservation of momentum on the x-axis:

$$
3 m v_{0}-m v=m v^{\prime} \cos 45=\frac{\sqrt{2}}{2} m v^{\prime}
$$

From the conservation of momentum on the y-axis:

$$
0=m v^{\prime} \sin 45-3 m \frac{v_{0}}{2}=m v^{\prime} \frac{\sqrt{2}}{2}-3 m \frac{v_{0}}{2}
$$

So,

$$
v^{\prime}=3 \frac{\sqrt{2}}{2} v_{o}
$$

Substitute it in the first equation

$$
3 m v_{0}-m v=\frac{\sqrt{2}}{2} m \cdot 3 \frac{\sqrt{2}}{2} v_{o}=\frac{3}{2} m v_{0}
$$

Then,

$$
v=\frac{3}{2} v_{0}
$$

Answer: $v=\frac{3}{2} v_{0} ; v^{\prime}=3 \frac{\sqrt{2}}{2} v_{o}$.

