Answer on Question \#55829, Physics / Optics

A fruit fly of height H sits in front of lens 1 on the central axis through the lens. The lens forms an image of the fly at a distance $d=30 \mathrm{~cm}$ from the fly; the image has the fly's orientation and height $H_{1}=2.5 \mathrm{H}$. What are (a) the focal length f_{1} of the lens and (b) the object distance p_{1} of the fly?

The fly then leaves lens 1 and sits in front of lens 2 , which also forms an image at $\mathrm{d}=30 \mathrm{~cm}$ that has the same orientation as the fly, but now $\mathrm{H}_{1}=0.86 \mathrm{H}$. What are (c) f_{2} and (d) p_{2} ?

Solution:

Definitions of the terms :
$\mathrm{p}=$ object distance
$\mathrm{i}=$ image distance
$d=$ distance between image and object
$f=$ focal length
$m=$ magnification

In this case $m>+1$, and we know that lens 1 is converging (producing a virtual image), so that our result for focal length should be positive.

Since

$$
\left|i_{1}+p_{1}\right|=d
$$

and

$$
m=-\frac{i_{1}}{p_{1}}=2.5
$$

we find

$$
\begin{gathered}
i_{1}=-2.5 p_{1} \\
\left|-2.5 p_{1}+p_{1}\right|=d \\
p_{1}=\frac{d}{1.5}=\frac{30}{1.5}=20 \mathrm{~cm}
\end{gathered}
$$

and

$$
i_{1}=-2.5 * 20=-50 \mathrm{~cm}
$$

Thin lens equation

$$
\frac{1}{p_{1}}+\frac{1}{i_{1}}=\frac{1}{f_{1}}
$$

sign rules
p is positive = object is in front of the lens
i is negative = image is on the same side of the object (virtual image !)
f is positive = converging lens
Substitute the values, you get ,

$$
\begin{gathered}
\frac{1}{20}-\frac{1}{50}=\frac{1}{f_{1}}, \\
\frac{3}{100}=\frac{1}{f_{1}}
\end{gathered}
$$

$$
f_{1}=\frac{100}{3}=+33.3 \mathrm{~cm}
$$

(c) In this case $0<m<1$ and we know that lens 2 is diverging (producing a virtual image), so that our result for focal length should be negative. Since $\left|\mathrm{p}_{2}+\mathrm{i}_{2}\right|=30 \mathrm{~cm}$ and

$$
i_{2}=-0.86 p_{2}
$$

we find

$$
\begin{aligned}
& \left|p_{2}-0.86 p_{2}\right|=30 \mathrm{~cm} \\
& p_{2}=\frac{30}{0.14}=214.29 \mathrm{~cm}
\end{aligned}
$$

and

$$
i_{2}=-0.86 * \frac{30}{0.14}=-184.29 \mathrm{~cm}
$$

Substituting these into Thin lens equation leads to

$$
\begin{gathered}
\frac{0.14}{30}-\frac{0.14}{30 * 0.86}=\frac{1}{f_{2}}, \\
-\frac{49}{64500}=\frac{1}{f_{2}} \\
f_{2}=-\frac{64500}{49}=-1316.33 \mathrm{~cm}
\end{gathered}
$$

Answer: (a) $f_{1}=\frac{100}{3}=+33.3 \mathrm{~cm}$; (b) $p_{1}=20 \mathrm{~cm}$ (c) $f_{2}=-1316.33 \mathrm{~cm}$; (d) $p_{2}=214.29 \mathrm{~cm}$

