Question #55653, Physics / Electric Circuits |

A copper wire has a resistance of 2.0 ohm at 0C and 2.26 ohm at 30C. What is the resistance at 50C?

Answer:

The resistance of the copper wire is defined by the equation:

 $R_1 = R_0(1+\alpha[T_1 - T_0])$, where R_1 , T_1 – the final resistance and temperature, R_0 , T_0 – the initial resistance and temperature and α – the temperature coefficient for copper.

Using data for the resistances at 0 C^0 and 30 C^0 , the temperature coefficient of resistance for copper can be found:

2.26 ohm = 2.0 ohm(1+ α [30 C⁰ - 0 C⁰])

 $2.26 \text{ ohm} = 2.0 \text{ ohm} + 30\alpha$

 $\alpha = 0.26/(30 \text{ C}^0) = 8.7 \times 10^{-3} (\text{C}^0)^{-1}$

Thus, the resistance at 50 C^0 is:

(The initial temperature and resistance are 30 C⁰ and 2.26 ohm, respectively.)

 $R_1 = 2.26 \text{ ohm} \times (1 + 8.7 \times 10^{-3} (C^0)^{-1} [50 C^0 - 30 C^0]) = 2.65 \text{ omh}$

https://www.AssignmentExpert.com