Answer on Question\#55540-Physics - Other

Potential difference between center and surface of the sphere of radius R and uniform volume charge density d within it will be?

Solution:

According to the Gauss's law the electric flux Φ_{E} through the spherical surface which center coincides with the center of the charged ball is given by

$$
\Phi_{E}=\frac{Q}{\varepsilon_{0}}
$$

where ε_{0} - is the electric constant, Q - is the charge enclosed by this surface.

Since $\Phi_{E}=4 \pi r^{2} E$ (where r - is the radius of the sphere), the electric field at distance r from the center is given by

$$
E=\frac{\Phi_{E}}{4 \pi r^{2}}=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{r^{2}}
$$

The electric charge enclosed by the sphere is given by

$$
Q=\frac{4}{3} \pi r^{3} d
$$

Therefore the electric field is now given by

$$
E=\frac{1}{4 \pi \varepsilon_{0}} \frac{\frac{4}{3} \pi r^{3} d}{r^{2}}=\frac{r d}{3 \varepsilon_{0}}
$$

The potential difference $\Delta \varphi$ between center and surface is given by

$$
\Delta \varphi=\int_{0}^{R} E d r=\int_{0}^{R} \frac{r d}{3 \varepsilon_{0}} d r=\frac{d}{3 \varepsilon_{0}} \frac{R^{2}}{2}=\frac{R^{2} d}{6 \varepsilon_{0}}
$$

Answer: $\frac{R^{2} d}{6 \varepsilon_{0}}$.

