Answer on Question \#55644, Physics Other

A sphere of radius 1 m is given 1 mC charge. How much charge will leak in air?

Solution:

It depends on the pressure and air humidity.

However, we assume that the conditions are normal.

The sphere will be discharged until the field near it will be more than $30 \mathrm{kV} / \mathrm{cm}$.
$E(R)=\frac{Q}{4 \pi \varepsilon_{0} R^{2}}=\frac{1 \cdot 10^{-3} \mathrm{C}}{4 \pi \cdot 8.85 \cdot 10^{-12} \mathrm{~F} / \mathrm{m} \cdot(1 \mathrm{~m})^{2}}=8.99 \cdot 10^{6} \mathrm{~V} / \mathrm{m}$
where Q is initial charge of the sphere; R is the radius of the sphere; $\varepsilon_{0}=8.85 \cdot 10^{-12} \mathrm{~F} / \mathrm{m}$ is the vacuum permittivity.
$\Delta Q=Q-4 \pi \varepsilon_{0} R^{2} \cdot 3 \cdot 10^{6} \mathrm{~V} / \mathrm{m}=1 \cdot 10^{-3} \mathrm{C}-4 \pi \cdot\left(8.85 \cdot 10^{-12} \mathrm{~F} / \mathrm{m}\right) \cdot(1 \mathrm{~m})^{2} \cdot 3 \cdot 10^{6} \mathrm{~V} / \mathrm{m}=6.7 \cdot 10^{-4} \mathrm{C}=0.67 \mathrm{mC}$

Answer: $\Delta Q=Q-4 \pi \varepsilon_{0} R^{2} \cdot 3 \cdot 10^{6} \mathrm{~V} / \mathrm{m}=0.67 \mathrm{mC}$

