Answer on Question \#55640-Physics-Mechanics-Relativity

The resulting temperature when 1 kg of ice at 0 degrees Celsius is mixed with 9 kg of water at 50 degrees Celsius is \qquad to the nearest whole number. The specific capacity of water is $4200 \mathrm{~J} / \mathrm{kg} / \mathrm{K}$, the specific latent heat of fusion of ice is $330000 \mathrm{~J} / \mathrm{kg}$
A. 24 degrees Celsius
B. 37 degrees Celsius
C. 46 degrees Celsius
D. 56 degrees Celsius

Solution

Let the final temperature of the water be x and imagine that there is sufficient energy to melt all the ice so that $x>0$.

The ice requires 330000 J to melt plus $4200 \cdot x$ to raise the temperature to x.
This energy comes from cooling the remainder of the water:
mass \cdot temperature change \cdot specific heat $=9(50-x) 4200 ;$

Hence

$$
330000+4200 \cdot x=9(50-x) 4200
$$

Now solve

$$
\begin{gathered}
330000+4200 x=450 \cdot 4200-9 x \cdot 4200 \\
x=\frac{450 \cdot 4200-330000}{10 \cdot 4200}=37^{\circ} \mathrm{C}
\end{gathered}
$$

Answer: B. 37 degrees Celsius.

