Answer on Question 55632, Physics, Molecular Physics | Thermodynamics

Question:

Determine the quantity of heat required to convert 1 kg of ice at $-20^{\circ} \mathrm{C}$ to water at $100^{\circ} \mathrm{C}$? Specific heat capacities of water and ice water are $2302 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$ and $4186 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}}$ respectively.

Solution:

Let us calculate the quantity of heat that is needed to transform a 1 kg of ice at $-20^{\circ} \mathrm{C}$ to water at $100^{\circ} \mathrm{C}$:

$$
Q=Q_{1}+Q_{2}+Q_{3},
$$

where Q_{1} is the amount of heat required to raise the temperature of ice from $-20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}, Q_{2}$ is the latent heat required to change the state from ice at $0^{\circ} \mathrm{C}$ to water at $0^{\circ} \mathrm{C}$ and Q_{3} is the amount of heat required to raise the temperature of water from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.
$Q_{1}=m_{i c e} c_{i c e} \Delta t=1 \mathrm{~kg} \cdot 2302 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot(273.15 \mathrm{~K}-253.15 \mathrm{~K})=46040 \mathrm{~J}$,
$Q_{2}=m_{\text {ice }} L_{f}=1 \mathrm{~kg} \cdot 3.33 \cdot 10^{5} \frac{\mathrm{~J}}{\mathrm{~kg}}=333000 \mathrm{~J}$ (Here, L_{f} is specific latent heat of water for fusion),

$$
\begin{aligned}
& Q_{3}=m_{\text {water }} c_{\text {water }} \Delta t=1 \mathrm{~kg} \cdot 4186 \frac{\mathrm{~J}}{\mathrm{~kg} \cdot \mathrm{~K}} \cdot(373.15 \mathrm{~K}-273.15 \mathrm{~K})=418600 \mathrm{~J} . \\
& Q=Q_{1}+Q_{2}+Q_{3}=46040 \mathrm{~J}+333000 \mathrm{~J}+418600 \mathrm{~J}=797640 \mathrm{~J} .
\end{aligned}
$$

Answer:

$Q=797640 J$.

