Answer on Question \#55618, Physics - Other

The velocity v of a particle is given by the equation $v=6 t^{\wedge} 2-6 t^{\wedge} 3$, where v is in m / s and t is the time in seconds. What is the minimum velocity?

Answer

Firstly, let's find extremum points from the equation

$$
\begin{gathered}
\frac{d v}{d t}=0 . \\
\frac{d v}{d t}=12 t-18 t^{2}=6 t(2-3 t)=0 \rightarrow t_{1}=0 ; t_{2}=2 / 3 . \\
t_{2}=\frac{2}{3} \text { s it is maximum. Absolute minimum value is } v(0)=0 \frac{\mathrm{~m}}{\mathrm{~s}}, \\
\text { but for } t \rightarrow \infty, v \rightarrow-\infty .
\end{gathered}
$$

Thus, $\left|v_{\text {min }}\right|=0 \frac{m}{s}$ and $v_{\text {min }}=-\infty$.

