Answer on Question \#55610, Physics / Mechanics
 Relativity

In an experiment to determine the period of oscillation of a loaded spiral spring, T^{2} was plotted on the vertical axis and M on the horizontal axis. T is the period while M is the effective mass. Which of the following is CORRECT?
A. the slope of the graph gives the acceleration due to gravity, g
B. the inverse of the slope of the graph gives M
C. the intercept on the vertical axis of the graph gives M
D. the intercept on the horizontal axis of the graph gives M

Solution:

There is a relationship between the period of oscillation T, the loaded mass M and the effective mass of the spiral spring m.

$$
T=2 \pi \sqrt{\frac{M+m}{k}}
$$

where, k is the spring constant.
We then reduce the expression to a linear one by squaring both sides of the equation.

$$
\begin{gathered}
T^{2}=4 \pi^{2} \frac{M+m}{k} \\
T^{2}=4 \pi^{2} \frac{M}{k}+4 \pi^{2} \frac{m}{k}
\end{gathered}
$$

By plotting the values of T^{2} against the corresponding values of M, we would obtain a straight line graph which does not pass through the origin as shown in figure.

The intercept on the horizontal axis is obtained when $T^{2}=0$.

$$
M=-m
$$

which gives us the effective mass of the spiral spring.

Answer: D. the intercept on the horizontal axis of the graph gives M

