Answer on Question\#55521 - Physics - Optics

An object is placed in front of two convex lenses one by one at a distance ' u ' from the lens. The focal lengths of lenses are $f_{1}=30 \mathrm{~cm}$ and $f_{2}=15 \mathrm{~cm}$ respectively. If the size of image formed in two cases is same, then ' u ' is-

Solution:

The magnification of the object at the object distance u in front of the lens with focal length f is given by

$$
M=\frac{f}{f-u}
$$

It's given that $\left|M_{1}\right|=\left|M_{2}\right|$, that is

$$
\frac{f_{1}}{\left|f_{1}-u\right|}=\frac{f_{2}}{\left|f_{2}-u\right|}
$$

This equation is equivalent to the following system:

$$
\begin{aligned}
& {\left[\begin{array}{l}
\frac{f_{1}}{f_{1}-u}=\frac{f_{2}}{f_{2}-u} \\
\frac{f_{1}}{f_{1}-u}=\frac{f_{2}}{u-f_{2}}
\end{array}\right.} \\
& {\left[\frac{30 \mathrm{~cm}}{30 \mathrm{~cm}-u}=\frac{15 \mathrm{~cm}}{15 \mathrm{~cm}-u}\right.} \\
& \frac{30 \mathrm{~cm}}{30 \mathrm{~cm}-u}=\frac{15 \mathrm{~cm}}{u-15 \mathrm{~cm}} \\
& {\left[\begin{array}{l}
30 \mathrm{~cm}-2 u=30 \mathrm{~cm}-u \\
2 u-30 \mathrm{~cm}=30 \mathrm{~cm}-u
\end{array}\right.} \\
& {\left[\begin{array}{c}
u=0 \mathrm{~cm} \\
u=20 \mathrm{~cm}
\end{array}\right.}
\end{aligned}
$$

$u=0 \mathrm{~cm}$ is inconsistent therefore the answer is $u=20 \mathrm{~cm}$.
Answer: 20 cm .

