Answer on Question \#55455, Physics / Optics

A particle moves towards a concave mirror of focal length 30 cm along its axis and with a constant speed of $4 \mathrm{~cm} / \mathrm{s}$. What is the speed of its image when the particle is at 90 cm from the mirror?

Solution:

The equation for image formation by rays near the optic axis (paraxial rays) of a mirror has the same form as the thin lens equation:

$$
\frac{1}{o}+\frac{1}{i}=\frac{1}{f}
$$

where $o=$ object distance, $i=$ image distance, $f=$ focal length.
Differentiation with respect to time

$$
\frac{d}{d t}\left(\frac{1}{o}\right)+\frac{d}{d t}\left(\frac{1}{i}\right)=\frac{d}{d t}\left(\frac{1}{f}\right)
$$

$\mathrm{f}=$ const
Thus,

$$
\begin{gathered}
-\frac{1}{o^{2}} \frac{d o}{d t}-\frac{1}{i^{2}} \frac{d i}{d t}=0 \\
\frac{d i}{d t}=-\frac{i^{2}}{o^{2}} \frac{d o}{d t}
\end{gathered}
$$

Here:

$$
\begin{aligned}
\frac{d o}{d t} & =4 \mathrm{~cm} / \mathrm{s} \\
o & =90 \mathrm{~cm}
\end{aligned}
$$

From mirror equation

$$
\begin{gathered}
\frac{1}{i}=\frac{1}{30}-\frac{1}{90}=\frac{2}{90} \\
i=\frac{90}{2}=45 \mathrm{~cm}
\end{gathered}
$$

Hence,

$$
\frac{d i}{d t}=-\frac{45^{2}}{90^{2}} \cdot 4=-1 \mathrm{~cm} / \mathrm{s}
$$

Answer: So image is moving at $1 \mathrm{~cm} / \mathrm{s}$ away from mirror
http://www.AssignmentExpert.com/

