Answer on Question \#55301, Physics / Optics

The angle of minimum deviation for a 75° prism of dense glass is found to be 45° when in air and 15° when immersed in certain liquid. The refractive index of the liquid is

Solution:

The minimum deviation D in a prism occurs when the entering angle and the exiting angle are the same, a particularly symmetrical configuration. Applying Snell's Law at the interfaces you can derive the following relationship:

$$
\frac{n}{n_{0}}=\frac{\sin \frac{D_{1}+A}{2}}{\sin \frac{A}{2}}
$$

where n is the refractive index of glass, $\mathrm{n}_{0}=1$ is the refractive index of air, D_{1} is the angle of minimum deviation, and A is the internal angle of the prism.

Thus,

$$
n=\frac{\sin \frac{45^{\circ}+75^{\circ}}{2}}{\sin \frac{75^{\circ}}{2}}=1.423
$$

Equation for liquid is

$$
\frac{n}{n_{L}}=\frac{\sin \frac{D_{2}+A}{2}}{\sin \frac{A}{2}}
$$

Thus,

$$
n_{L}=n \frac{\sin \frac{A}{2}}{\sin \frac{D_{2}+A}{2}}=1.423 \cdot \frac{\sin \frac{75^{\circ}}{2}}{\sin \frac{75^{\circ}+15^{\circ}}{2}}=1.225
$$

Answer: $\quad n_{L}=1.225$

