

Answer on Question 55297, Physics, Other

Question:

A 0.2kg rod of brass at 100°C is dropped into 0.5kg of water at 20°C . The final temperature of the mixture is 23°C . Calculate the specific heat capacity of brass, if the specific heat capacity of water is $4200\text{J/kg}\cdot^\circ\text{C}$.

Solution:

The water will be heated, while the rod of brass will be cooled. We can write the heat balance equation:

$$m_{\text{water}}c_{\text{water}}(T - t_{\text{water}}) = m_{\text{brass}}c_{\text{brass}}(t_{\text{brass}} - T),$$

here, m_{water} is the mass of water, c_{water} is the specific heat capacity of water, t_{water} is the temperature of water, m_{brass} is the mass of rod of brass, c_{brass} is the specific heat capacity of brass, t_{brass} is the temperature of rod of brass and T is the final temperature of the mixture.

From this equation we can find the specific heat capacity of brass:

$$c_{\text{brass}} = \frac{m_{\text{water}}c_{\text{water}}(T - t_{\text{water}})}{m_{\text{brass}}(t_{\text{brass}} - T)} = \frac{0.5\text{kg} \cdot 4200 \frac{\text{J}}{\text{kg}\cdot^\circ\text{C}} \cdot (23^\circ\text{C} - 20^\circ\text{C})}{0.2\text{kg} \cdot (100^\circ\text{C} - 23^\circ\text{C})} = 409 \frac{\text{J}}{\text{kg}\cdot^\circ\text{C}}.$$

Answer:

$$c_{\text{brass}} = 409 \frac{\text{J}}{\text{kg}\cdot^\circ\text{C}}.$$