Answer on Question \#55295-Physics-Mechanics-Kinematics-Dynamics

A large 3 kg object hangs from a rope wound on a 40 kg wheel. The wheel has an actual radius of 0.75 m and a radius of gyration of 0.60 m . Find the angular acceleration and the distance through which the weight will fall in the first 10s.

Solution

The second Newton's law for rotational motion:

$$
\alpha=\frac{\tau}{I}
$$

where α is the angular acceleration, τ is torque, $I=M r_{g}^{2}$ is moment of inertia.

$$
\alpha=\frac{m g r}{M r_{g}^{2}}=\frac{3 \cdot 9.8 \cdot 0.75}{40 \cdot 0.60^{2}}=1.5 \frac{\mathrm{rad}}{\mathrm{~s}^{2}}
$$

The distance through which the weight will fall in the first 10 s is

$$
l=r \theta=r \frac{\alpha t^{2}}{2}=\frac{0.75 \cdot 1.5 \cdot 10^{2}}{2}=56 \mathrm{~m}
$$

