Answer on Question \#55269, Physics / Mechanics | Kinematics | Dynamics

A cart moving horizontally along a straight line with constant speed of $30 \mathrm{~m} / \mathrm{s}$. A projectile is fired from the moving cart in such a way that it will return to the cart has moved 80 m . At what speed (relative to the cart) and at what angle (to the horizontal) must the projectile be fired?

Solution:

We begin with the equation of motion for the cart, which will be equal to $\mathrm{x}=30 \mathrm{t}$
Now, we need to note the projection on horizontal axis:

$$
v_{\text {projectile-ground }}=v_{\text {cart-ground }}+v_{\text {cart-projectile }}
$$

For the projectile the equation of motion will be equal:

$$
\begin{gathered}
x=x_{0}+v_{\text {projectile-ground }} \cdot t \\
x=x_{0}+v_{\text {cart-ground }} \cdot t
\end{gathered}
$$

Thus, the projection on horizontal axis for the cart:

$$
\begin{aligned}
\mathrm{v}_{\text {projectile-ground }} & =\mathrm{v}_{\text {cart-ground }} \\
\mathrm{v}_{\text {cart-projectile }} & =0 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Now, we perform the projection on the vertical axis, we note the same equation relatively for the y axis:

$$
\begin{aligned}
\mathrm{v}_{\text {projectile-ground }} & =\mathrm{v}_{\text {cart-projectile }} \\
\mathrm{v}_{\text {cart-ground }} & =0 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
$$

Then, we need to represent the equation of motion in projection on x axis:
First, for the projectile:

$$
y=v_{\text {projectile-ground }} \cdot t-\frac{g t^{2}}{2}
$$

For the chart:

$$
y=0
$$

It is known that a projectile is fired from the moving cart in such a way that it will return to the cart has moved 80 m , so, we can write:

$$
30 t=80
$$

From the equation noted above, we can determine the time:

$$
\mathrm{t}=\frac{x}{\mathrm{v}_{\text {cart-ground }}}=\frac{80 \mathrm{~m}}{30 \frac{\mathrm{~m}}{\mathrm{~s}}}=2.667 \mathrm{~s}
$$

It should be noted, since the cart is moving at a constant velocity, for a projectile to land back on the cart it would have to be fired at 90 degrees to the horizontal.

Then, we substitute into the formula:

$$
\begin{aligned}
& y=v_{\text {projectile-ground }} \cdot t-\frac{g t^{2}}{2} \\
& v_{\text {projectile-ground }} \cdot t-\frac{g t^{2}}{2}=0
\end{aligned}
$$

Simplify the equation:

$$
\mathrm{v}_{\text {projectile-ground }} \cdot \mathrm{t}=\frac{\mathrm{gt}^{2}}{2}
$$

Now, we express the $v_{\text {projectile-ground }}$:

$$
\mathrm{v}_{\text {projectile-ground }}=\frac{\mathrm{gt}}{2}=\frac{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 2.667 \mathrm{~s}}{2}=13.0683 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

