Answer on Question \#55268, Physics / Mechanics | Kinematics | Dynamics

A racing car of mass 1000 kg moves around a banked track at a constant speed of 30 ms . Assuming the total reaction at the wheels is normal to the track and the horizontal radius is 100 m . Calculate the angle of inclination of the track to the horizontal.

Solution:

First, we should note the given data in accordance with the task. We have: mass of the racing car $=1000 \mathrm{~kg}$, constant speed $(v)=30 \mathrm{~m} / \mathrm{s}$, the horizontal radius $(r)=100 \mathrm{~m}$.

We also need to create the graph of the car's motion. The information is provided in Figure 1.

Figure 1 Motion of the car around a banked track.
In accordance with the condition of the task, a racing car of mass m moves around a banked track, the force acting vertically downwards is equal to $m g$; as can be seen from the Figure $1, \mathrm{R}$ is the reaction force, $\tan \theta=\frac{v^{2}}{r g}$ (where r is the radius and g is $9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$).

Now, we need to construct an appropriate equation, which takes into account all applied forces:

$$
\mathrm{R} \cos \theta=\mathrm{mg}
$$

We note, horizontally this component would equal the centripetal force:

$$
R \cos (90-\theta)=m g
$$

$v=r w, \mathrm{w}$ is the angular speed, r is the radius

We can express w:

$$
w=\frac{v}{r}
$$

Then, we substitute the angular speed into the formula noted below:
$\mathrm{F}=\mathrm{mrw}^{2}=\frac{m r v^{2}}{r^{2}}=\frac{m v^{2}}{r},(\mathrm{~F}$ is the force towards the centre of the track, r is the radius, w is the angular speed).

Thus, we can rewrite the equation for the forces acting on the car:

$$
R \sin \theta=\frac{m v^{2}}{r}
$$

We have noted that $\tan \theta=\frac{v^{2}}{r g^{2}}$, so, we can find an angle:

$$
\theta=\tan ^{-1}\left(\frac{\mathrm{v}^{2}}{\mathrm{r} \cdot \mathrm{~g}}\right)=\tan ^{-1}\left(\frac{\left(30 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{100 \mathrm{~m} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}\right)=\tan ^{-1}(0.918)=42.551^{\circ}
$$

Thus, the angle of inclination of the track to the horizontal will be equal to 42.551°.

