Answer on Question \#55265, Physics / Mechanics

A large 3 kg object hangs from a rope wound on a 40 kg wheel. The wheel has an actual radius of 0.75 m and a radius of gyration of 0.60 m . Find (a) the angular acceleration and (b) the distance through which the weight will fall in the first 10s.

Solution:

(a) The net torque is

$$
\tau=F r_{1}
$$

where $r_{1}=0.75 \mathrm{~m}$ and $F=m_{1} g=(3 \mathrm{~kg}) *\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)=29.4 \mathrm{~N}$
Newton's second law for rotation:

$$
\tau=I \alpha
$$

where I is moment of inertia and α is angular acceleration.
The radius of gyration about a given axis r_{g} can be computed in terms of the mass moment of inertia I around that axis, and the total mass m;

$$
r_{g}=\sqrt{\frac{I}{m_{2}}}
$$

Thus,

$$
I=m_{2} r_{g}^{2}
$$

Hence,

$$
\alpha=\frac{\tau}{I}=\frac{m_{1} g r_{1}}{m_{2} r_{g}^{2}}=\frac{3.0 * 9.8 * 0.75}{40 * 0.60^{2}}=1.53 \mathrm{rad} / \mathrm{s}^{2}
$$

(b) The relationship between acceleration of the rope, a, and the angular acceleration, α

$$
a=r_{1} \alpha
$$

The distance through which the weight will fall is

$$
h=\frac{a t^{2}}{2}=\frac{r_{1} \alpha t^{2}}{2}=\frac{0.75 * 1.53 * 10^{2}}{2} \approx 57.4 \mathrm{~m}
$$

Answer: (a) $1.53 \mathrm{rad} / \mathrm{s}^{2}$; (b) 57.4 m

