Answer on Question \#55222-Physics-Mechanics-Kinematics-Dynamics

At what altitude above the earth's surface would the acceleration due to gravity be $4.9 \mathrm{~ms}-2$? Assume the mean radius of the earth is 6.4×106 meters and the acceleration due to gravity $9.8 \mathrm{~ms}-2$ on the surface of the earth.

Solution

The velocity of a freely falling body increased at a steady rate i.e., the body had acceleration.
This acceleration is called acceleration due to gravity g .
Let a body of mass m be placed on the surface of the Earth:

$$
g=\frac{G M}{R^{2}}
$$

where M is the mass of the Earth, R is the radius of the Earth and G is the gravitational constant.
Let the body be now placed at a height h above the Earth's surface. Let the acceleration due to gravity at that position be g^{\prime}.

Then,

$$
g^{\prime}=\frac{G M}{(R+h)^{2}}
$$

For comparison, the ratio between g^{\prime} and g is taken

$$
\frac{g^{\prime}}{g}=\left(\frac{R}{R+h}\right)^{2}
$$

Thus,

$$
h=R\left(\sqrt{\frac{g}{g^{\prime}}}-1\right)=6.4 \cdot 10^{6} \cdot\left(\sqrt{\frac{9.8}{4.9}}-1\right)=2.65 \cdot 10^{6} \mathrm{~m}
$$

Answer: $2.65 \cdot 10^{6} \mathrm{~m}$

