Answer on Question \#55217-Physics-Mechanics-Kinematics-Dynamics

A ball of mass $m=50 \mathrm{~g}=0.05 \mathrm{~kg}$ tied to the end of a $l=50 \mathrm{~cm}=0.5 \mathrm{~m}$ inextensible string is whirled around in a vertical circle. Find the tension in the string when the ball is at the top of the circle. Take $g=$ $10 \mathrm{~ms}^{-2}$.

Solution

If you have a ball on the end of a string and you swing it in a vertical circle the "centripetal force" or the forces causing the acceleration will be a combination of the tension from the string and gravity.

The Tension and Weight are the forces causing the acceleration. The ball is also moving in a circle so at the highest and lowest points

$$
\text { Tension }+ \text { Weight }=\text { CentripetalForce } .
$$

Hence,

$$
\begin{gathered}
F_{n e t}=m a=\frac{m v^{2}}{r} \\
T+W=m a
\end{gathered}
$$

Thus,

$$
T=m a-W=\frac{m v^{2}}{r}-m g=m\left(\frac{v^{2}}{r}-g\right)
$$

The tension depends on speed of ball v.

You need to know the speed of ball.
If $v=\sqrt{g r}$, then $T=0$.
If $>\sqrt{g r}$, then $T>0$.

