Answer on Question\#55216 - Physics - Mechanics | Kinematics | Dynamics

$$
3.8\left(\frac{m}{s^{2}}\right)
$$

Question

An upward force of $1.2 * 10^{4} \mathrm{~N}$ acts on an elevator of mass $2.0 * 10^{3} \mathrm{~kg}$. Calculate the acceleration of the elevator. Take $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

Solution

Denote the upward force (F_{u}), the gravity force (F). Consider coordinate system as displayed on the picture.

Write down relevant formulae:

$$
\begin{gathered}
m a=\sum_{i} F_{i} \\
\sum_{i} F_{i}=F-F_{u} \\
F=m g,
\end{gathered}
$$

where m - mass of the elevator, a - acceleration, $\sum_{i} F_{i}$ - result force.

Rearrange formulae and factor out a :

$$
\begin{gathered}
m a=F-F_{u} \\
m a=m g-F_{u} \\
a=g-\frac{F_{u}}{m}
\end{gathered}
$$

Plug in numbers:

$$
a=9.8-\frac{1.2 * 10^{4}}{2 * 10^{3}}=9.8-0.6 * 10^{1}=9.8-6.0=3.8\left(\frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)
$$

Note: acceleration directed downwards.

