Answer on Question \#55214-Physics-Mechanics-Kinematics-Dynamics

A racing car of mass 1000 kg moves around a banked track at a constant speed of 30 ms . Assuming the total reaction at the wheels is normal to the track and the horizontal radius is 100 m . Calculate the angle of inclination of the track to the horizontal.

Solution

Consider a car of mass m going around the curve. The car's weight, $m g$, acts vertically downwards. The road surface exerts an upward normal reaction R on the car. The vertical component of the reaction must balance the downward weight of the car, so

$$
R \cos \theta=m g
$$

The horizontal component of the reaction, $R \sin \theta$, acts towards the centre of curvature of the road. This component provides the force $\frac{m v^{2}}{r}$ towards the centre of the curvature which the car experiences as it rounds the curve. In other words,

$$
R \sin \theta=\frac{m v^{2}}{r} .
$$

Thus,

$$
\begin{gathered}
\tan \theta=\frac{v^{2}}{r g} \\
\theta=\tan ^{-1} \frac{v^{2}}{r g}=\tan ^{-1} \frac{30^{2}}{100 \cdot 9.8}=42.56^{\circ}
\end{gathered}
$$

Answer: 42.56 ${ }^{\circ}$.

