Answer on Question 55212, Physics, Mechanics | Kinematics | Dynamics

Question:

At what height above the Earth's surface would the acceleration due to gravity be $4.9 \mathrm{~m} / \mathrm{s}^{2}$? Assume the mean radius of the Earth is $6.4 \cdot 10^{6} \mathrm{~m}$ and the acceleration due to gravity on the Earth surface is $9.8 \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

Let a body of mass m be placed on the Earth surface, whose mass is M and radius is R. Then, the acceleration due to gravity on the Earth surface looks like:

$$
g=\frac{G M}{R^{2}} .
$$

Now we placed the body at a height h above the Earth's surface. Then, the acceleration due to gravity above the Earth's surface g^{\prime} looks like:

$$
g^{\prime}=\frac{G M}{(R+h)^{2}} .
$$

Let's take the ratio between g and g^{\prime} :

$$
\frac{g}{g^{\prime}}=\frac{(R+h)^{2}}{R^{2}}=\frac{9.8 \mathrm{~m} / \mathrm{s}^{2}}{4.9 \mathrm{~m} / \mathrm{s}^{2}}=2 .
$$

Then, we get quadratic equation from which we can obtain h :

$$
\begin{gathered}
(R+h)^{2}=2 R^{2}, \\
R^{2}+2 R h+h^{2}=2 R^{2}, \\
h^{2}+2 R h-R^{2}=0 .
\end{gathered}
$$

This equation has two roots:

$$
\begin{gathered}
D=b^{2}-4 a c=(2 R)^{2}-4 \cdot 1 \cdot\left(-R^{2}\right)=4 R^{2}+4 R^{2}=8 R^{2}, \\
h_{1}=\frac{-b-\sqrt{D}}{2 a}=\frac{-2 R-\sqrt{8 R^{2}}}{2}=\frac{-2 R-2 R \sqrt{2}}{2}=-R-R \sqrt{2} . \\
h_{2}=\frac{-b+\sqrt{D}}{2 a}=\frac{-2 R+\sqrt{8 R^{2}}}{2}=\frac{-2 R+2 R \sqrt{2}}{2}=-R+R \sqrt{2} .
\end{gathered}
$$

Because the height can't be negative the correct answer is $h=-R+R \sqrt{2}$.
Then, we can calculate the height above the Earth's surface at which the acceleration due to gravity would be $4.9 \mathrm{~m} / \mathrm{s}^{2}$:

$$
h=R \sqrt{2}-R=R(\sqrt{2}-1)=0.41 R=0.41 \cdot 6.4 \cdot 10^{6} m=2.624 \cdot 10^{6} m
$$

Answer:

$h=2.624 \cdot 10^{6} \mathrm{~m}$.
http://www.AssignmentExpert.com/

