Answer on Question55195-Physics / Mechanics - Kinematics Dynamics - for completion

October 1, 2015

A large $m=3 \mathrm{~kg}$ object hangs from a rope wound on a $M=40 \mathrm{~kg}$ wheel. The wheel has an actual radius of $R=0.75 \mathrm{~m}$ and a radius of gyration of $\rho=0.60 \mathrm{~m}$. Find the angular acceleration and the distance through which the weight will fall in the first $t_{1}=10 \mathrm{~s}$.

Solution

If a is the acceleration if an object, and T is the tension of the rope, then according to the Newton's second law:

$$
m a=m g-T
$$

The moment of the force acting on the wheel:

$$
M=T R
$$

The equation of motion of the wheel:

$$
I \varepsilon=M
$$

where I is moment of inertia:

$$
\begin{gathered}
I=M \rho^{2} \\
a=\varepsilon R
\end{gathered}
$$

From the equations above:

$$
\begin{gathered}
M \rho^{2} \varepsilon=m(g-\varepsilon R) R \\
\varepsilon=\frac{m g}{M \rho^{2}+m R^{2}} \approx 1.83 \mathrm{rad} / \mathrm{s}^{2}
\end{gathered}
$$

The distance through which the weight will fall in the first 10 s :

$$
d=\frac{a t_{1}^{2}}{2}=\frac{\varepsilon R t_{1}^{2}}{2} \approx 86.6 \mathrm{~m}
$$

http://www.AssignmentExpert.com/

