Distance covered by tile that falls from rest (general equation):

$$
\begin{equation*}
h=\frac{g t^{2}}{2} \tag{1}
\end{equation*}
$$

Let x be the distance from the sill of the upper window to the roof; t - time to pass distance $x ; \Delta x$ $=3 \mathrm{~m}-$ distance between two windowsills; $\Delta t=0.39 \mathrm{~s}-$ time to pass distance Δx.

Let's use (1) to get the equation for distance x :
$x=\frac{g t^{2}}{2} ;$
And for total distance from roof to lower windowsill:
$x+\Delta x=\frac{g(t+\Delta t)^{2}}{2}$
Now let's combine (2) and (3) to a system:
$\left\{\begin{aligned} x+\Delta x & =\frac{g(t+\Delta t)^{2}}{2} \\ x & =\frac{g t^{2}}{2}\end{aligned}\right.$
Simplifying and deducting equations:
$\left\{\begin{array}{c}2 x+2 \Delta x=g t^{2}+2 g t \Delta t+g \Delta t^{2} \\ 2 x=g t^{2}\end{array} ;\right.$
$2 \Delta x=2 g t \Delta t+g \Delta t^{2} ;$
$t=\frac{2 \Delta x-g \Delta t^{2}}{2 g \Delta t} ;$
$t=\frac{2 \cdot 3-9.8 \cdot 0.39^{2}}{2 \cdot 9.8 \cdot 0.39} ;$
$t=0.59 \mathrm{~s}$
Now let's find x from (2):
$x=\frac{9.8 \cdot 0.59^{2}}{2} ;$
$x=1.71 \mathrm{~s}$

