

Answer on Question#55168 – Physics – Mechanics | Kinematics | Dynamics

Question

A ball thrown upwards returns to the ground with the initial speed of u . The ball is at a height of 80 m at two times, the time interval being 6 s . Find u by assuming $g = 10\frac{\text{m}}{\text{s}^2}$.

Solution

“Ball returns to the ground with the initial speed”, hence there is no friction.

If there is no friction, we can use the conservation law: $mgh = \frac{mv^2}{2}$, where m – mass of the ball, h – highest position of the ball, $v \equiv u$ – initial speed of the ball.

Due to the symmetry of process (once again, because there is no friction) it takes the same time for the ball to move upward from 80 m to h , as to move downward from h to 80 m .

Thus, we can formulate next equation:

$$h - 80 = \frac{g * 3^2}{2}$$

It comes from general formula (free fall): $s = \frac{gt^2}{2} + v_0 t$, we consider covered distance (s) to be the distance between the highest point and 80 m , respective time according to the statement above is $\frac{6}{2} = 3\text{ s}$, we consider start of movement to be at the reflection point, hence initial speed (v_0) is 0.

Plug in g and solve for h :

$$h = 80 + \frac{10 * 3^2}{2} = 80 + 5 * 9 = 80 + 45 = 125\text{ (m)}$$

As far as we know h , we can get v from the conservation law:

$$mgh = \frac{mv^2}{2}$$

$$v^2 = 2gh$$

$$v = \sqrt{2gh}$$

$$v = \sqrt{2 * 10 * 125} = \sqrt{2 * 2 * 5 * 5^3} = \sqrt{2^2 * 5^4} = 2 * 5^2 = 50\left(\frac{\text{m}}{\text{s}}\right)$$

$$u \equiv v = 50\frac{\text{m}}{\text{s}}$$