

Question #55092, Physics / Mechanics | Kinematics | Dynamics |

A ball thrown down from a balcony lands in 0.7 s on the ground at a speed of 23 m/s. Find:

- the initial speed;
- the height from which it was thrown;
- the time to land if it were thrown up from the balcony with the same initial speed.

Answer:

The speed of the ball on the ground is defined by the equation:

$$v = v_0 + gt, \text{ where } t - \text{the time of fly and } v_0 - \text{the initial speed.}$$

Thus,

a) $v_0 = v - gt = 23 \text{ m s}^{-1} - [9.8 \text{ m s}^{-2} \times 0.7 \text{ s}] = 16.14 \text{ m/s}$

b) The height equals:

$$h = v_0 t + 0.5gt^2 = 16.14 \text{ m s}^{-1} \times 0.7 \text{ s} + 0.5 [9.8 \text{ m s}^{-2} \times 0.49 \text{ s}^2] = 11.298 \text{ m} + 2.401 \text{ m} = 13.7 \text{ m}$$

c) If the ball goes up it travels unless its speed becomes zero:

$$v = v_0 + gt_1 = 0, t_1 - \text{the time of fly in the opposite direction to the ground.}$$

$$\text{Therefore, } t_1 = \frac{v_0}{g} = \frac{23}{9.8} \text{ s} = 2.35 \text{ s}$$

The ball travels the following distance:

$$h_1 = v_0 t_1 - 0.5gt_1^2 = 23 \text{ m s}^{-1} \times 2.35 \text{ s} - 0.5 [9.8 \text{ m s}^{-2} \times 5.5225 \text{ s}^2] = 27 \text{ m}$$

After this the ball falls down with zero initial speed being of h (27 m + 13.7 m) over the ground.

The time of this free fall is found using the equation:

$$h = 0.5gt_2^2.$$

$$\text{Thus, } t_2 = \left(\frac{h}{0.5g} \right)^{0.5} = \left(\frac{40.7}{0.5 \times 9.8} \right)^{0.5} = 2.88 \text{ s}$$

Finally, the total time of fly is:

$$t = t_1 + t_2 = 2.35 \text{ s} + 2.88 \text{ s} = 5.23 \text{ s}$$