

Question #55091, Physics / Mechanics | Kinematics | Dynamics |

A truck starts from rest and accelerates at 0.7m/s^2 . 5 s later, a car accelerates from rest at the same starting point with an acceleration of 2.2m/s^2 .

a) Where and when does the car catch the truck?

56.47 m from the starting point

at 12.7 seconds from the moment the truck started to accelerate.

b) What are their velocities when they meet?

The truck : 8.89 m/s

The car : 16.94 m/s

Answer:

a) Let's make an assumption that they meet at the distance d from the starting point in t seconds:

Then, $d = 0.5a_1t^2$, where a_1 – the acceleration of the truck, (for the truck) and

$d = 0.5a_2(t - \Delta t)^2 - 0.5a_1\Delta t^2$, where a_2 – the acceleration of the car and Δt – the difference in starting time (for the car).

Thus,

$$0.5a_1t^2 = 0.5a_2(t - \Delta t)^2 - 0.5a_1\Delta t^2,$$

$$0.5 \times 0.7t^2 = 0.5 \times 2.2(t-5)^2 - 0.5 \times 0.7 \times 25$$

$$0.35t^2 = 1.1(t-5)^2 - 8.75$$

$$0.35t^2 - 1.1(t^2 - 10t + 25) = -8.75$$

$$-0.75t^2 + 11t - 27.5 + 8.75 = 0$$

$$t^2 - 14.67t + 25 = 0$$

$$D = 215.21 - 100 = 115.21$$

$$t = [14.67 + 10.73]/2 = 12.7\text{ s}$$

The distance is: $d = 0.5a_1t^2 = 0.5 \times 0.7 \times 12.7^2\text{ m} = 56.47\text{ m}$.

b) The velocities are calculated by the equations:

For the truck: $v = a_1t = 0.7 \times 12.7\text{ m/s} = 8.89\text{ m/s}$

For the car: $v = a_2(t - \Delta t) = 2.2 \times (12.7 - 5)\text{ m/s} = 16.94\text{ m/s}$