Question \#55091, Physics / Mechanics | Kinematics | Dynamics |

A truck starts from rest and accelerates at $0.7 \mathrm{~m} / \mathrm{s} 2.5$ s later, a car accelerates from rest at the same starting point with an acceleration of $2.2 \mathrm{~m} / \mathrm{s} 2$.
a) Where and when does the car catch the truck?
56.47 m from the starting point
at \qquad 12.7 seconds from the moment the truck started to accelerate.
b) What are their velocities when they meet?

The truck : $8.89 \mathrm{~m} / \mathrm{s}$
The car : $16.94 \mathrm{~m} / \mathrm{s}$

Answer:

a) Let's make an assumption that they meet at the distance d from the starting point in t seconds:

Then, $d=0.5 a_{1} t^{2}$, where $a_{1}-$ the acceleration of the truck, (for the truck) and
$d=0.5 \mathrm{a}_{2}(\mathrm{t}-\Delta \mathrm{t})^{2}-0.5 \mathrm{a}_{1} \Delta \mathrm{t}^{2}$, where $\mathrm{a}_{2}-$ the acceleration of the car and $\Delta \mathrm{t}-$ the difference in starting time (for the car).

Thus,
$0.5 \mathrm{a}_{1} \mathrm{t}^{2}=0.5 \mathrm{a}_{2}(\mathrm{t}-\Delta \mathrm{t})^{2}-0.5 \mathrm{a}_{1} \Delta \mathrm{t}^{2}$,
$0.5 \times 0.7 \mathrm{t}^{2}=0.5 \times 2.2(\mathrm{t}-5)^{2}-0.5 \times 0.7 \times 25$
$0.35 t^{2}=1.1(t-5)^{2}-8.75$
$0.35 t^{2}-1.1\left(t^{2}-10 t+25\right)=-8.75$
$-0.75 t^{2}+11 t-27.5+8.75=0$
$t^{2}-14.67 t+25=0$
$D=215.21-100=115.21$
$\mathrm{t}=[14.67+10.73] / 2=12.7 \mathrm{~s}$
The distance is: $\mathrm{d}=0.5 \mathrm{a}_{1} \mathrm{t}^{2}=0.5 \times 0.7 \times 12.7^{2} \mathrm{~m}=56.47 \mathrm{~m}$.
b) The velocities are calculated by the equations:

For the truck: $v=a_{1} t=0.7 \times 12.7 \mathrm{~m} / \mathrm{s}=8.89 \mathrm{~m} / \mathrm{s}$
For the car: $v=a_{2}(t-\Delta t)=2.2 \times(12.7-5) \mathrm{m} / \mathrm{s}=16.94 \mathrm{~m} / \mathrm{s}$

