

Answer on Question#55068 - Physics - Mechanics | Kinematics | Dynamics

A simple pendulum of length l is suspended from a hook mounted on a slanted wall. The wall makes a small angle θ with the vertical. The pendulum is displaced from the vertical by a small angle ϕ and released. Assuming that the collision of the bob is elastic, the time period of oscillation is

Solution.

Without wall period of oscillation would be $T_0 = 2\pi\sqrt{\frac{l}{g}}$. Period of oscillation with wall:

$T = T_0 - \Delta t$, where Δt is time in which pendulum without wall would move from angle θ to ϕ and return to θ . To find Δt we have to solve the equation: $\phi \sin \sqrt{\frac{g}{l}} = \theta$. We have

$t_1 = \sqrt{\frac{l}{g}} \sin^{-1} \left(\frac{\theta}{\phi} \right)$ (first time pass θ) and $t_2 = \sqrt{\frac{l}{g}} (\pi - \sin^{-1} \left(\frac{\theta}{\phi} \right))$ (return to θ). Now we find $\Delta t = t_2 - t_1 = \sqrt{\frac{l}{g}} \left(\pi - 2 \sin^{-1} \left(\frac{\theta}{\phi} \right) \right)$ and, finally, $T = \sqrt{\frac{l}{g}} \left(\pi + 2 \sin^{-1} \left(\frac{\theta}{\phi} \right) \right)$.

Answer: $T = \sqrt{\frac{l}{g}} \left(\pi + 2 \sin^{-1} \left(\frac{\theta}{\phi} \right) \right)$.