

Answer on Question 55066, Physics / Astronomy | Astrophysics

Question:

For a 2ms pulsar where we can measure pulse times-of-arrival (TOAs) to a fractional precision of 10^{-3} of the pulsar period, estimate the frequency precision we can achieve over a 10-year span of data using pulsar timing.

Solution:

In general, the frequency f of any signal is just the derivative of its phase - with time: $f = d\phi/dt$. TOAs correspond to measurements of the pulse phase. In this case, we can make a fractional phase measurement $\Delta\phi = 10^{-3}$ over a timespan of 10 yrs ($\Delta t = 3.15 \times 10^8$ s). Therefore, the precision is:

$$f_{err} = \frac{\Delta\phi}{\Delta t} = \frac{1 \times 10^{-3}}{3.15 \times 10^8} \approx 3 \times 10^{18} \text{ Hz}$$

Answer: $f_{err} = 3 \times 10^{18} \text{ Hz}$