Answer on Question\#55046 - Physics - Electromagnetism

A uniform charge of $+Q$ is placed on the sphere of a Van de Graaff generator, such that electron discharge is observed from a conducting point a distance of 46 cm away (center to center). Assume the dielectric strength of air, $E=3 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{C}}$
(a) Determine the electric potentials at the 100 cm and 80 cm radial location
(b) A small air balloon of charge $q=-8.4 \mathrm{nC}$ mass $m=1.52$ grams, is placed at rest at the 100 cm potential surface, and then released. Determine its speed v at the 80 cm radial location (neglect any air resistance and work $=\Delta K$)

Solution:

The electric field at the distance r (greater than its radius) from the center of the charged sphere is given by

$$
E=k_{e} \frac{Q}{r^{2}},
$$

where $k_{e}=8.988 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}-$ is the electrostatic constant. Since for $r=46 \mathrm{~cm}$ the electric field is given $E=3 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{C}}$, we can find the charge of the sphere

$$
Q=\frac{E \cdot r^{2}}{k_{e}}=\frac{3 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{C}} \cdot(0.46 \mathrm{~m})^{2}}{8.988 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}}}=0.7 \mu \mathrm{C}
$$

(a) The potential of the charged sphere at the distance r is given by

$$
\varphi=k_{e} \frac{Q}{r}
$$

Therefore the potential at $r=100 \mathrm{~cm}$ is given by

$$
\varphi(100 \mathrm{~cm})=8.988 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}} \frac{0.7 \mu \mathrm{C}}{1 \mathrm{~m}}=6292 \mathrm{~V}
$$

The potential at $r=80 \mathrm{~cm}$ is given by

$$
\varphi(80 \mathrm{~cm})=8.988 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{C}^{2}} \frac{0.7 \mu \mathrm{C}}{0.8 \mathrm{~m}}=7865 \mathrm{~V}
$$

(b) According to the law of conservation of energy, the difference in kinetic energies E_{k} at these distances is equal to the difference in the potential energies V at these distances of the balloon:

$$
\begin{gathered}
E_{k}(80 \mathrm{~cm})-E_{k}(100 \mathrm{~cm})=V(100 \mathrm{~cm})-V(80 \mathrm{~cm}) \\
E_{k}(80 \mathrm{~cm})-E_{k}(100 \mathrm{~cm})=q \cdot(\varphi(100 \mathrm{~cm})-\varphi(80 \mathrm{~cm}))= \\
=-8.4 \mathrm{nC} \cdot(6292 \mathrm{~V}-7865 \mathrm{~V})=13.2 \mu \mathrm{~J}
\end{gathered}
$$

Since $E_{k}(100 \mathrm{~cm})=0$ and $E_{k}(80 \mathrm{~cm})=\frac{m \cdot v^{2}}{2}$, we obtain

$$
\frac{m \cdot v^{2}}{2}=13.2 \mu \mathrm{~J}
$$

$$
v=\sqrt{\frac{2 \cdot 13.2 \mu \mathrm{~J}}{m}}=\sqrt{\frac{26.4 \mu \mathrm{~J}}{1.52 \mathrm{~g}}}=0.13 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Answer:
(a) $\varphi(100 \mathrm{~cm})=6292 \mathrm{~V}$ $\varphi(80 \mathrm{~cm})=7865 \mathrm{~V}$
(b) $0.13 \frac{\mathrm{~m}}{\mathrm{~s}}$

