Answer on Question 55018, Physics, Mechanics | Kinematics | Dynamics

Question:

A stone thrown from ground level returns to the same level 4 seconds after. With what speed was the stone thrown? Take $g=10 \mathrm{~m} / \mathrm{s}^{2}$.

Solution:

We can find the initial velocity of the stone from the kinematic equation:

$$
v=v_{0}+g t_{\text {rise }},
$$

where, $v=0 \mathrm{~m} / \mathrm{s}$ is the final velocity of the stone when it reaches the maximum height and then became returns to the ground level, $g=10 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration of gravity and $t_{\text {rise }}$ is the time when the stone reaches the maximum height (it is obviously that $t_{\text {rise }}=t / 2$, where $t=4 s$ is the total time that the stone spent in air).

Let's take the direction of the y-axis upward. Then, we can rewrite our kinematic equation:

$$
\begin{gathered}
v_{0}-g t_{\text {rise }}=0, \\
v_{0}=g t_{\text {rise }}=g \frac{t}{2}=10 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot \frac{4 \mathrm{~s}}{2}=20 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

Answer:

$v_{0}=20 \frac{\mathrm{~m}}{\mathrm{~s}}$.

http://www.AssignmentExpert.com/

