Answer on Question\#51955 - Physics - Other

George, a physics student, leaves his dormitory at a speed of $v_{G}^{0}=1.2 \frac{\mathrm{~m}}{\mathrm{~s}}$, heading for the physics building $l=95 \mathrm{~m}$ away. Just as he leaves his dorm, Amy, another physics student, leaves the physics building and heads toward George at a steady $v_{A}=1.6 \frac{\mathrm{~m}}{\mathrm{~s}}$. George immediately spots her and begins accelerating at $a_{G}=0.075 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. Where and when do the two meet? Plot position-versus-time curves for both students on a single graph.

Solution:

Let the dormitory be situated at $x=0$ and physics building at $x=95 \mathrm{~m}$, then George's position as the function of time t is given by

$$
x_{G}(t)=v_{G}^{0} t+\frac{a_{G} t^{2}}{2}=1.2 t+0.0375 t^{2}
$$

The Amy's position as the function of t is given by

$$
x_{A}(t)=l-v_{A} t=95-1.6 t
$$

To find the time t when they meet we must solve the following equation (when their positions coincide)

$$
\begin{gathered}
x_{G}(t)=x_{A}(t) \\
1.2 t+0.0375 t^{2}=95-1.6 t
\end{gathered}
$$

This equation has only one positive root

$$
t_{m}=\frac{76}{3} \mathrm{~s}
$$

The position of both Amy and George is given by

$$
x_{G}\left(t_{m}\right)=x_{A}\left(t_{m}\right)=95-1.6 t_{m}=95-1.6 \cdot \frac{76}{3}=\frac{817}{15} \mathrm{~m}
$$

Red line - Amy, blue line - George.
Answer: $\frac{76}{3} \mathrm{~s}, \frac{817}{15} \mathrm{~m}$.

