Answer on Question:54962

A 400 cm diameter lens has focal lengths in the blue and red regions of the spectrum given by: $\mathrm{FB}=2995 \mathrm{~mm}, \mathrm{FR}=3000 \mathrm{~mm}$.
(i) What is the value of the focal length corresponding to the position of the circle of least confusion?
(ii) What is the linear size of the image of a star at its focal position?

Solution:

(i) By similar triangles:

$$
\frac{D}{F_{B}}=\frac{d}{F_{C}-F_{B}}, \text { and } \frac{D}{F_{R}}=\frac{d}{F_{R}-F_{C}}
$$

Dividing these identities:

$$
\frac{F_{R}}{F_{B}}=\frac{F_{R}-F_{C}}{F_{C}-F_{B}}
$$

giving:

$$
F_{C}=\frac{2 F_{B} \times F_{R}}{F_{R}+F_{B}}
$$

Inserting the values gives:

$$
F_{C}=\frac{2 \times 3000 \times 2995}{5995}=2997 \mathrm{~mm}
$$

Answer: $\mathrm{F}_{\mathrm{C}}=\mathbf{2 9 9 7} \mathbf{~ m m}$
(ii) Again by similar triangles:

$$
\frac{d}{F_{C}-F_{B}}=\frac{D}{F_{B}}
$$

Hence:

$$
d=\frac{D \times\left(F_{C}-F_{B}\right)}{F_{B}}=\frac{40 \times 2}{2995}=0.33 \mathrm{~mm}
$$

Answer: $\mathbf{d}=\mathbf{0 . 3 3} \mathbf{~ m m}$

