Answer on Question \#54957, Physics / Astronomy | Astrophysics

We need draw the artificial satellite is at perigee at A (the point in its orbit nearest the Earth's centre E) and at apogee at A' (when it is farthest from the Earth's centre):

The size of the major axis AA' of the ellipse is given by:

$$
\mathrm{AA}^{\prime}=4023+2 \times 6372+660=17427 \mathrm{~km}
$$

So that the semi-major axis al is of length $8713 \cdot 5 \mathrm{~km}$. The period of revolution is $\mathrm{T} 1=134$ minutes. For the Earth orbit:

$$
\begin{gathered}
\mathrm{a}=149.5 \times 10^{6} \mathrm{~km} \\
\mathrm{~T}=365.25 \times 24 \times 60=5.2596 \times 10^{5} \text { minutes. }
\end{gathered}
$$

Letting M and m be the masses of Sun and Earth respectively, we have, using equation:

$$
\frac{m}{M}=\left(\frac{134}{5.2596 \times 10^{5}}\right)^{2}\left(\frac{149.5 \times 10^{6}}{8713.5}\right)^{3}=327800
$$

Answer: $\mathbf{m} / \mathbf{M}=\mathbf{3 2 7 8 0 0}$

