

Answer on Question #54941-Physics-Mechanics-Kinematics-Dynamics

The planet Jupiter has an elliptical orbit with $e = 0.05$ and a semi-major axis of $7.8 \cdot 10^{11} \text{ m}$.

Calculate the energy of the planet, perihelion and aphelion distances and the speed of the planet at these points.

Solution

The energy of the planet is

$$E = \epsilon \frac{mM}{m + M}$$

where ϵ is specific orbital energy, m is mass of Jupiter, M is the mass of Sun.

$$\epsilon = -\frac{G(m + M)}{2a}.$$

$$E = -\frac{G(m + M)}{2a} \frac{mM}{m + M} = -\frac{G(m + M)}{2a} = -\frac{6.67 \cdot 10^{-11} (1.988 \cdot 10^{30} + 1.898 \cdot 10^{27})}{2 \cdot 7.8 \cdot 10^{11}} = -8.5 \cdot 10^7 \text{ J}.$$

Aphelion distance is

$$r_a = (1 + e)a = 8.2 \cdot 10^{11} \text{ m}.$$

Perihelion distance is

$$r_p = (1 - e)a = 7.4 \cdot 10^{11} \text{ m}.$$

Under standard assumptions the orbital speed v of a body traveling along an elliptic orbit can be computed from the Vis-viva equation as:

$$v = \sqrt{\mu \left(\frac{2}{r} - \frac{1}{a} \right)}.$$

μ is the standard gravitational parameter. For Jupiter

$$\mu = 126686534 \frac{\text{km}^3}{\text{s}^2} = 126686534 \cdot 10^9 \frac{\text{m}^3}{\text{s}^2}.$$

For aphelion

$$v = \sqrt{126686534 \cdot 10^9 \left(\frac{2}{8.2 \cdot 10^{11}} - \frac{1}{7.8 \cdot 10^{11}} \right)} = 383 \frac{\text{m}}{\text{s}}.$$

For perihelion

$$v = \sqrt{126686534 \cdot 10^9 \left(\frac{2}{7.4 \cdot 10^{11}} - \frac{1}{7.8 \cdot 10^{11}} \right)} = 424 \frac{\text{m}}{\text{s}}.$$