

Answer on question #54928, Physics / Astronomy — Astrophysics

Question Problem: 1. Consider a 2 M neutron star. The mass of a neutron is 1.67×10^{24} g, and $1 M = 2 \cdot 10^{33}$ g. (i) How many neutrons are in this neutron star? (1 point)

- A. 6.0×10^{23} neutrons
- B. 1.2×10^{23} neutrons
- C. 1.2×10^{57} neutrons
- D. 2.4×10^{57} neutrons
- E. 6.7×10^9 neutrons

Solution Number of neutrons is

$$N = \frac{M_{star}}{m_{neutron}} = \frac{2 \cdot 2 \cdot 10^{33}}{1.67 \cdot 10^{-24}} \approx 2.4 \times 10^{57}$$

Answer is D.