Question

A particle starts moving with acceleration $2 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. Distance travelled by it in 5 th half second is
(1) 1.25
(2) 2.25
(3) 6.25
(4) 30.25

All are in meter

Solution

Use the formula of distance travelled during first t seconds:
$L=\frac{a t^{2}}{2}+V_{0} t$, where $L-$ distance $(m), a-\operatorname{acceleration}\left(\frac{m}{s^{2}}\right), V_{0}-$ initial velocity $\left(\frac{m}{s}\right)$.
"Starts moving" \rightarrow initial velocity $=0 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Then, if we put in numbers: $L=\frac{2 t^{2}}{2}+0 t=t^{2} ; t$ in seconds, L in meters.
Calculate the distance covered in first 2 seconds $\left(L_{1}\right)$ and first 2.5 seconds $\left(L_{2}\right)$.

$$
\begin{gathered}
L_{1}=2^{2}=4(\mathrm{~m}) \\
L_{2}=2.5^{2}=6.25(\mathrm{~m})
\end{gathered}
$$

Subtract L_{1} from L_{2}.

$$
L_{2}-L_{1}=6.25-4=2.25(\mathrm{~m})
$$

Obtained result is nothing else, but the distance travelled in 5 th half second.

