Answer on Question#54924 - Physics - Mechanics | Kinematics | Dynamics

Question

A particle starts moving with acceleration $2\frac{m}{s^2}$. Distance travelled by it in 5th half second is

- (1) 1.25
- (2) 2.25
- (3) 6.25
- (4) 30.25

All are in meter

Solution

Use the formula of distance travelled during first *t* seconds:

$$L = \frac{at^2}{2} + V_0 t$$
, where L — distance (m), a — acceleration $\left(\frac{m}{s^2}\right)$, V_0 — initial velocity $\left(\frac{m}{s}\right)$.

"Starts moving" \rightarrow initial velocity = $0 \frac{m}{s}$.

Then, if we put in numbers: $L = \frac{2t^2}{2} + 0t = t^2$; t in seconds, L in meters.

Calculate the distance covered in first 2 seconds (L_1) and first 2.5 seconds (L_2) .

$$L_1 = 2^2 = 4 (m)$$

$$L_2 = 2.5^2 = 6.25 (m)$$

Subtract L_1 from L_2 .

$$L_2 - L_1 = 6.25 - 4 = 2.25 (m)$$

Obtained result is nothing else, but the distance travelled in 5th half second.