Answer on Question\#54851-Physics - Mechanics - Kinematics - Dynamics

You throw a ball from the balcony onto the court in the basketball arena. You release the ball at a height of $H_{i}=6 \mathrm{~m}$ above the court, with an initial velocity equal to $v=9 \frac{\mathrm{~m}}{\mathrm{~s}}$ at $\varphi=33^{\circ}$ above the horizontal. A friend of yours, standing on the court $L=10 \mathrm{~m}$ from the point directly beneath you, waits for a period of time after you release the ball and then begins to move directly away from you at an acceleration of $a=3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$. (She can only do this for a short period of time!) If you throw the ball in a line with her, how long after you release the ball should she wait to start running directly away from you so that she'll catch the ball exactly $H_{f}=1 \mathrm{~m}$ above the floor of the court?

Solution:

To find the time the ball spent in the air it's useful to write the dependence of the ball's height h from time $t(t=0 \mathrm{~s}$ when the ball is released):

$$
h(t)=H_{i}+v \cdot \sin \varphi \cdot t-\frac{g t^{2}}{2}
$$

where $g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$ - is the acceleration due to gravity. To find the time it spent in the air we should solve the previous equation for $h(t)=H_{f}$:

$$
\begin{gathered}
H_{f}=H_{i}+v \cdot \sin \varphi \cdot t-\frac{g t^{2}}{2} \\
1 \mathrm{~m}=6 \mathrm{~m}+9 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \sin 33^{\circ} \cdot t-\frac{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot t^{2}}{2} \\
5 \mathrm{~m}+4.9 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot t-4.9 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot t^{2}=0
\end{gathered}
$$

This equation has only one positive root

$$
t=1.6 \mathrm{~s}
$$

Since the horizontal speed of the ball is constant and equal to $v_{h}=v \cdot \cos \varphi=9 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot \cos 33^{\circ}=$ $7.5 \frac{\mathrm{~m}}{\mathrm{~s}}$, the ball overcomes the distance

$$
l_{f}=v_{h} \cdot t=7.5 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 1.6 \mathrm{~s}=12 \mathrm{~m}
$$

Therefore the friend should overcome the distance of $l_{f}-L=12 \mathrm{~m}-10 \mathrm{~m}=2 \mathrm{~m}$ to catch the ball. She will need some time τ to do this. This time is given by

$$
\tau=\sqrt{\frac{2\left(l_{f}-L\right)}{a}}=\sqrt{\frac{2 \cdot 2 \mathrm{~m}}{3 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}}=1.2 \mathrm{~s}
$$

Therefore after the ball was released she should wait for the following time

$$
t-\tau=1.6 \mathrm{~s}-1.2 \mathrm{~s}=0.4 \mathrm{~s}
$$

Answer: 0.4s.

