

Answer on Question 54833, Physics, Mechanics | Kinematics | Dynamics

Question:

A coin with a diameter of 2.5cm is dropped on edge onto a horizontal surface. The coin starts out with an initial angular speed of 23 rad/s and rolls in a straight line without slipping. If the rotation slows with an angular acceleration of magnitude 2.1 rad/s^2 , how far does the coin roll before it stops?

Solution:

Let's first find the angular displacement θ from the kinematic equation:

$$\omega_f^2 = \omega_i^2 + 2\alpha\theta,$$

where, ω_f is the final angular speed, ω_i is the initial angular speed, α is the angular acceleration and θ is the angular displacement.

Since, $\omega_f = 0\text{ rad/s}$ (coin finally stops) and angular acceleration is negative (the rotation of the coin is slow) we can rewrite our equation:

$$0 = \omega_i^2 - 2\alpha\theta.$$

From this equation we can find the angular displacement θ :

$$\theta = \frac{\omega_i^2}{2\alpha} = \frac{(23 \frac{\text{rad}}{\text{s}})^2}{2 \cdot 2.1 \frac{\text{rad}}{\text{s}^2}} = 126\text{rad}.$$

Finally, we can find the distance that coin roll before it stops from the relation between linear and angular variables (here, $r = d/2 = 0.025\text{m}/2 = 0.0125\text{m}$ is the radius of the coin):

$$s = \theta r = 126\text{rad} \cdot 0.0125\text{m} = 1.57\text{m}.$$

Answer:

$$s = 1.57\text{m}.$$