Answer on Question \#54784, Physics Electric Circuits

There is a triangle ABC with each of it's side having a capacitor of capacitance 1 F . Now, another triangle DEF is concentrically placed over triangle ABC and has capacitors of capacitance 1 F on each of it's side. Points A and D, B and E, C and F are connected with 1 F capacitors between them. Find the equivalent capacitance between the points A and D. Please explain how.

Solution

Fig. 1

The electric circuit in Figure 1 can be more convenient to represent (see. Figure 2)

Fig. 2

The capacitor between points F and C can be thrown to the scheme (we got a balanced Wheatstone bridge).

Fig. 3

The capacity between points D and E :

$$
\begin{equation*}
C_{D E}=\frac{1 F}{2}+1 F=1.5 F \tag{1}
\end{equation*}
$$

Fig. 4

The capacity between points A and B :

$$
\begin{equation*}
C_{A B}=\left(\frac{1}{1 F}+\frac{1}{1 F}+\frac{1}{1.5 F}\right)^{-1}+\left(\frac{1}{1 F}+\frac{1}{1 F}\right)^{-1}+\left(\frac{1}{1 F}\right)^{-1}=19 F / 16=1.1875 F \tag{2}
\end{equation*}
$$

Answer: $C_{A B}=19 F / 16=1.1875 F$

