

Answer on Question #54779-Physics-Mechanics-Kinematics-Dynamics

A particular spring stretches 20 cm when a 500g mass is hung from it. Suppose a 2.0kg mass is attached to the string and it is displaced 40 cm from equilibrium position and released. Find the speed of the mass when $x = 10$ cm.

Solution

For the first mass the equilibrium will be when

$$m_1g = kx_1.$$

$$k = \frac{m_1g}{x_1} = \frac{0.5 \cdot 9.8}{0.2} = 24.5 \frac{N}{m}.$$

From the conservation of energy law

$$\frac{kx_i^2}{2} = \frac{kx_f^2}{2} + \frac{mv^2}{2} + mg(x_i - x_f).$$

For the second mass the equilibrium will be when

$$m_2g = kx_2.$$

$$x_2 = \frac{m_2g}{k} = \frac{2.0 \cdot 9.8}{24.5} = 0.8 \text{ m}.$$

The speed of the mass when $x = 10$ cm is

$$\begin{aligned} v &= \sqrt{\frac{k}{m}(x_i^2 - x_f^2) - 2g(x_i - x_f)} \\ &= \sqrt{\frac{24.5}{2.0}((0.4 + 0.8)^2 - (0.1 + 0.8)^2) - 2 \cdot 9.8((0.4 + 0.8) - (0.1 + 0.8))} = 1.4 \frac{m}{s}. \end{aligned}$$

Answer: $1.4 \frac{m}{s}$.