Answer on Question \#54691, Physics / Mechanics

What is the average velocity of the earth the instant it has traveled half of its circular orbit about the sun in m / s ?

Solution:

In one-half year, the Earth moves halfway around its orbit, a circle of radius $1.50 \times 10^{11} \mathrm{~m}$ centered on the Sun.

Algebraically an average velocity is defined as,

$$
v=\frac{d}{t}
$$

where, d is the displacement and t is the time taken for that displacement.
The displacement is

$$
d=2 R=2 * 1.50 * 10^{11}=3 * 10^{11} \mathrm{~m}
$$

The average length of the year in the modern calendar is 365.2425 days The time is a half of year

$$
t=\frac{1}{2} * 365.2425 \text { days } * 24 \text { hours } * 3600 \mathrm{sec}=15778476 \mathrm{~s}
$$

Thus, the average velocity is

$$
v=\frac{3 * 10^{11} \mathrm{~m}}{15778476 \mathrm{~s}}=19013.2 \frac{\mathrm{~m}}{\mathrm{~s}} \approx 19 * 10^{3} \mathrm{~m} / \mathrm{s}
$$

Answer: $19 * 10^{3} \mathrm{~m} / \mathrm{s}$

