Answer on Question \#54673, Physics Mechanics Kinematics Dynamics

Show that the direction cosine L, M, N of vectors $A x, A y, A z$ is given by $L=A x /|A|$, $\mathrm{M}=\mathrm{Ay} /|\mathrm{A}|, \mathrm{N}=\mathrm{Az} /|\mathrm{A}|$ and hence $\mathrm{L}^{\wedge} 2+\mathrm{M}^{\wedge} 2+\mathrm{N}^{\wedge} 2=1$.

Solution

Fig. 1

The cosines of the angles α, β, and γ in Fig. 1 are called the direction cosines and are designated by l, m, and n, respectively. Thus, in terms of A, A_{x}, A_{y}, and A_{z}

$$
\left\{\begin{array}{l}
l=\cos \alpha=A_{x} / A \tag{1}\\
m=\cos \beta=A_{y} / A \\
n=\cos \gamma=A_{z} / A
\end{array}\right.
$$

According to the Pythagorean theorem

$$
\begin{equation*}
\left(A_{x}\right)^{2}+\left(A_{y}\right)^{2}+\left(A_{z}\right)^{2}=A^{2} \tag{2}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left(A_{x} / A\right)^{2}+\left(A_{y} / A\right)^{2}+\left(A_{z} / A\right)^{2}=1 \tag{3}
\end{equation*}
$$

So, from Eq.(1)

$$
\begin{equation*}
(l)^{2}+(m)^{2}+(n)^{2}=1 \tag{4}
\end{equation*}
$$

