Answer on Question \#54622, Physics / Mechanics

(7.00) A person throws a ball straight up. He releases the ball at a height of 1.75 m above the ground and with a velocity of $12.0 \mathrm{~m} / \mathrm{s}$. Ignore the effects of air resistance.
(a) How long until the ball reaches its highest point?
(b) How high above the ground does the ball go?

Solution:

(a)

When the ball reaches the highest point his velocity equals to zero:

$$
v=v_{0}-g t=0
$$

Whether explicitly stated or not, the value of the acceleration in the kinematic equations is $g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ for any freely falling object.

Thus,

$$
t=\frac{v_{0}}{g}=\frac{12}{9.8}=1.22 \mathrm{~s} \approx 1.2 \mathrm{~s}
$$

(b)

From the equation of the motion:

$$
h=h_{0}+v_{0} t-\frac{g t^{2}}{2}=1.75+12 * 1.22-9.8 * \frac{1.22^{2}}{2} \approx 9.1 \mathrm{~m} .
$$

Answer: (a) 1.22 s ; (b) 9.1 m

