Answer on Question \#54592, Physics / Molecular Physics | Thermodynamics

Two closed containers of equal volume filled with air at pressure P and temperature T . Both are connected by a narrow tube. If one of the container is maintained at temperature T and other at temperature T^{\prime}, then new pressure in the container ...

Solution:

The ideal gas equation:

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}
$$

In our case:

$$
\frac{P V}{T}+\frac{P V}{T}=\frac{P^{\prime} V}{T}+\frac{P^{\prime} V}{T^{\prime}}
$$

Thus,

$$
\frac{P(2 V)}{T}=P^{\prime} V\left(\frac{1}{T}+\frac{1}{T^{\prime}}\right)
$$

So,

$$
P^{\prime}=\frac{2 P}{T} \frac{1}{\left(\frac{1}{T}+\frac{1}{T^{\prime}}\right)}=\frac{2 P}{1+\frac{T}{T^{\prime}}}
$$

Answer:

$$
P^{\prime}=\frac{2 P}{1+\frac{T}{T^{\prime}}}
$$

Answer:

