

Answer on Question #54452-Physics-Other

Two charges of $+25 \cdot 10^{-9}$ coulomb and $-25 \cdot 10^{-9}$ coulomb are placed 6 cm apart. Find the electric field intensity ratio at points 4 m from the centre of the electric dipole (1) on the axial line (2) on equatorial line

(1) $1000/49$

(2) $49/1000$

(3) $500/49$

(4) $49/500$

Solution

Here, $q = 25 \cdot 10^{-9} C$, $2a = 6m$, $r = 4m$.

$$p = q(2a) = 25 \cdot 10^{-9} \cdot 6 = 1.5 \cdot 10^{-7} Cm$$

Now,

$$E_{axial} = \frac{1}{4\pi\epsilon_0} \frac{2pr}{(r^2 - a^2)^2} = \frac{9 \cdot 10^9 \cdot 2 \cdot 1.5 \cdot 10^{-7} \cdot 4}{(4^2 - 3^2)^2} = \frac{10800}{49} \frac{N}{C}$$

$$E_{equi} = \frac{1}{4\pi\epsilon_0} \frac{p}{(r^2 + a^2)^{\frac{3}{2}}} = \frac{9 \cdot 10^9 \cdot 1.5 \cdot 10^{-7}}{(4^2 + 3^2)^{\frac{3}{2}}} = \frac{1350}{125} \frac{N}{C}$$

The ratio is

$$\frac{E_{axial}}{E_{equi}} = \frac{\frac{10800}{49}}{\frac{1350}{125}} = \frac{1000}{49}.$$

Answer: (1) $1000/49$.

Problem 2.03. Two charges of $+25 \times 10^{-9}$ coulomb and -25×10^{-9} coulomb are placed 6 m apart. Find the electric field at a point 4 m from the centre of the electric dipole
(i) on axial line (ii) on equitorial line.

Sol. Here, $q = 25 \times 10^{-9}$ C, $2a = 6$ m, $r = 4$ m

$$\therefore p = q(2a) = 25 \times 10^{-9} \times 6 = 1.5 \times 10^{-7}$$
 C m

$$\text{Now, } E_{\text{axial}} = \frac{1}{4\pi\epsilon_0} \cdot \frac{2pr}{(r^2 - a^2)^2} = \frac{9 \times 10^9 \times 2 \times 1.5 \times 10^{-7}}{(4^2 - 3^2)}$$

$$= \frac{2700}{49} = 55.1 \text{ N C}^{-1}$$

$$\text{and } E_{\text{equi}} = \frac{1}{4\pi\epsilon_0} \cdot \frac{p}{(r^2 + a^2)^{3/2}} = \frac{9 \times 10^9 \times 1.5 \times 10^{-7}}{(4^2 + 3^2)^{3/2}}$$

$$= \frac{1350}{125} = 10.8 \text{ N C}^{-1}$$